(u+7)(u+7)=2u^2-16u+25

Simple and best practice solution for (u+7)(u+7)=2u^2-16u+25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (u+7)(u+7)=2u^2-16u+25 equation:



(u+7)(u+7)=2u^2-16u+25
We move all terms to the left:
(u+7)(u+7)-(2u^2-16u+25)=0
We get rid of parentheses
-2u^2+(u+7)(u+7)+16u-25=0
We multiply parentheses ..
-2u^2+(+u^2+7u+7u+49)+16u-25=0
We get rid of parentheses
-2u^2+u^2+7u+7u+16u+49-25=0
We add all the numbers together, and all the variables
-1u^2+30u+24=0
a = -1; b = 30; c = +24;
Δ = b2-4ac
Δ = 302-4·(-1)·24
Δ = 996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{996}=\sqrt{4*249}=\sqrt{4}*\sqrt{249}=2\sqrt{249}$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{249}}{2*-1}=\frac{-30-2\sqrt{249}}{-2} $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{249}}{2*-1}=\frac{-30+2\sqrt{249}}{-2} $

See similar equations:

| 33k-9+20k+4=180 | | (t+1)(t+6)=0 | | 2a+2a+a+25=360 | | H=-t2t3t10 | | (15x-5)=(10x+35)=180 | | 10q+5q=200 | | 2^(3x+1)=17 | | a^2+10+9=0 | | x2−16/2x·18/3x+12= | | 9g-3g=+g | | 15+9x-8=88 | | 180-15=2a+1/2a | | t^+9t=20 | | t^+9t+20=0 | | 5x^-9x-2=0 | | 30/100x+28=x | | 5x+2-3x=8/7 | | 1/3x+600=x | | v^=7v-6 | | (x-1.32)=0.20*x | | Y=16x^2+25x | | 4y^2+2y+10=0 | | 7x+5x-10x+5=25-3x | | x+714=1-37x1 | | 4y+3y+2y=36 | | 4x+2x+2x=32 | | d=(R2)(R2+R1) | | 2(4x+3)=10x+4-2x+2 | | 8y+6=-10+10y | | 2(x-1)-3=-18 | | 4x+4=12x-55 | | 3/5x5/2=1.5 |

Equations solver categories